
XQuery Testing from XML Schema
Based Random Test Cases

Jesús M. Almendros-Jiménez(B) and Antonio Becerra-Terón

Department of Informatics, University of Almeŕıa, 04120 Almeŕıa, Spain
{jalmen,abecerra}@ual.es

Abstract. In this paper we present the elements of an XQuery test-
ing tool which makes possible to automatically test XQuery programs.
The tool is able to systematically generate XML instances (i.e., test
cases) from a given XML schema. The number and type of instances is
defined by the human tester. These instances are used to execute the
given XQuery program. In addition, the tool makes possible to provide
an user defined property to be tested against the output of the XQuery
program. The property can be specified with a Boolean XQuery function.
The tool is implemented as an oracle able to report whether the XQuery
program passes the test, that is, all the test cases satisfy the property,
as well as the number of test cases used for testing. In the case of the
XQuery program fails the testing, the tool shows counterexamples found
in the test cases. The tool has been implemented as an XQuery library
which makes possible to be used from any XQuery interpreter.

1 Introduction

Testing [21] is essential for ensuring software quality. The automation of test-
ing enables the programmer to reduce time of testing and also makes possible
to repeat testing after each modification to a program. A testing tool should
determine whether a test is passed or failed. When failed, the testing tool should
provide evidences of failures, that is, counterexamples of the properties to be
checked. Additionally, a testing tool should generate test cases automatically
[1]. Fully random generation could not be suitable for an effective and efficient
tool. Distribution of test data should be controlled, by providing user-defined test
cases, that is, data distribution should be put under the human tester’s control.
For testing XML based applications some benchmarks datasets are available
(for instance, XMark [20], Michigan Benchmark [19] and XBench [22]). How-
ever, they are not always suitable for testing applications. There are some cases
of automatic data generators for XML: ToXgene [2] using XML Schemas with
annotations of data distribution functions, VeXGene [16] using DTDs, and XBe-
Gene [14] based on examples. XML test case generation can find an application
field in Web Services [3,12] and Access Control Policies [7].

This work was supported by the EU (FEDER) and the Spanish MINECO Ministry
(Ministerio de Economı́a y Competitividad) under grant TIN2013-44742-C4-4-R, as
well as by the Andalusian Regional Government under Project P10-TIC-6114.

c© Springer International Publishing Switzerland 2015
Q. Chen et al. (Eds.): DEXA 2015, Part II, LNCS 9262, pp. 268–282, 2015.
DOI: 10.1007/978-3-319-22852-5 23

XQuery Testing from XML Schema Based Random Test Cases 269

XQuery has evolved into a widely accepted query language for XML process-
ing and many XQuery engines have been developed. Even though some tools
provide mechanisms for debugging (for instance, XMLSpy1, Oxigen2 and Stylus
Studio3, among others), users should be equipped with a large number of mech-
anisms for detecting failures in their applications. Among them testing would
facilitate the detection of bugs due to mistakes when using XQuery expres-
sions. Most of programming errors come from wrong XPath expressions (i.e.,
requesting paths/nodes of XML trees that do not exist), unsatisfiable Boolean
conditions and incompatible XPath expressions. Validation of XML documents
against XML Schemas mitigates some of these drawbacks. When an XQuery
expression against a given document returns an empty value/wrong answer,
stepwise/breakpoint/trace based debuggers can help to detect failures but it is
only useful for ensuring the correct execution for a single XML input instance. In
order to have a stronger confidence, XQuery programs should be tested against
a test suite covering a large range of test cases.

In this paper we present the elements of an XQuery testing tool which makes
possible to automatically test XQuery programs. The tool is able to systemati-
cally generate XML instances (i.e., test cases) from a given XML schema. The
number and type of instances is defined by the human tester. These instances
are used to execute the given XQuery program. In addition, the tool makes pos-
sible to provide an user defined property to be tested against the output of the
XQuery program. The property can be specified with a Boolean XQuery func-
tion. Our proposal can be seen as a black-block approach to XQuery testing.
The tool takes as input an XML Schema, an XQuery program and a property to
be checked against the output of the XQuery program. The tool automatically
generates a test suite from the XML Schema, it executes the XQuery program
and for each output of the program it checks the given property.

The tool is implemented as an oracle able to report whether the XQuery
expression passes the test, that is, all the test cases satisfy the property, as well
as the number of test cases used for testing. In case of success (i.e., all the outputs
of the XQuery program satisfy the property), the tool reports “Ok”. Otherwise
the tool reports counterexamples (i.e., inputs of the XQuery program for which
the output does not satisfy the given property). The tool is customizable in the
following sense. The human tester can define the structure and content of the
test cases from the XML schema. Additionally, the human tester can control
the number of test cases. He or she can tune the number and size of XML trees
generated from the XML schema. Thus, although the tool generates random
test cases, the tester can control the size of the test suite. The property to be
checked is defined by a Boolean XQuery function. Usually, the property expresses
a constraint in terms of XPath expressions and logical connectors: for all, exists,
and, or, etc., possibly making use of XQuery functions. It makes possible to
express a rich repertory of properties against output documents: the occurrence

1 http://www.altova.com/xmlspy/xquery-debugger.html.
2 http://www.oxygenxml.com/xml editor/xquery debugger.html.
3 http://www.stylusstudio.com/xquery debugger.html.

http://www.altova.com/xmlspy/xquery-debugger.html
http://www.oxygenxml.com/xml_editor/xquery_debugger.html
http://www.stylusstudio.com/xquery_debugger.html

270 J.M. Almendros-Jiménez and A. Becerra-Terón

of a certain value, the range of a certain attribute, the number of nodes, etc.
The code of the XQuery program is not used to generate the test suite. The
adequacy of the test suite to a given XQuery program is determined by the
human tester, that is, the human tester has to select an XML Schema suitable to
generate a test suite covering as many cases as possible. In essence he or she gives
with the schema the required paths as well as the values of tags and attributes of
the input documents. The tool randomly generates test cases as combinations of
paths and values. In summary, the tool enables a partial validation of the XQuery
program: for a subset of the input documents and a given property. Since the
testing is automatic and customizable, the human tester can easily change values
and paths as well as he or she can increase the number of test cases and play with
properties to have an stronger confidence about the soundness of the program.

Our approach is inspired by similar tools in functional languages. This is the
case of the Quickcheck tool [9] for Haskell, and the PropEr tool [18] for Erlang.
Properties in these approaches are specified by functions, and are automatically
tested from random test cases. Since XQuery is also a functional language, there
seems natural to provide a similar tool for XQuery programs. Nevertheless, the
context is different. XQuery is a functional language handling XML documents,
which are in essence ordered labeled trees, and XQuery has a main element
XPath expressions. Thus, here random test case generation is focused on trees
and thus specific algorithms can be defined to automatically generate trees of a
certain size. Properties in Quickcheck and PropEr are also defined by functions.
Thanks to the Higher Order capabilities of XQuery, the property can be passed
as argument to the tester, as well as the XQuery program, enabling the imple-
mentation of the tool in a similar way to Haskell and Erlang, that is, the tool
is an XQuery program implemented as an XQuery library and thus can be used
from any interpreter.

Our work is also inspired by some previous works about testing of XML appli-
cations. In [4] the XPT (XML-based Partition Testing) approach is presented
which makes possible the automatic generation of XML instances from a given
XML Schema. The TAXI tool4 has been developed in this framework [5]. XPT
is an adaptation of the well-known Category Partition Method [17], used to gen-
erate instances with all the possible combinations of elements. In this approach,
a test selection strategy is studied including user defined weight assignments for
choice statements in XML Schemas and derivation of XML Schemas from an ini-
tial XML Schema according to choice statements. XPT is able to generate XML
instances according to a fixed number of instances, a fixed functional coverage
(in percentage terms) and also a mixed criterium (fixed number of instances and
functional coverage). TAXI populates instances by specifying a source (i.e., a
URL), by manual insertion of values, or by taking values from the schema (in
the enumeration section). In [6] they use TAXI to test XSLT stylesheets. The
tool is able to report the result of the testing, using XML Schemas as model
to which output XML instances must conform. In our approach, we take the
XML Schema as input for test case generation similarly to TAXI. But there

4 http://labsewiki.isti.cnr.it/labsedc/tools/taxi/public/main.

http://labsewiki.isti.cnr.it/labsedc/tools/taxi/public/main

XQuery Testing from XML Schema Based Random Test Cases 271

are some differences. In our case, the XML Schema rather than representing all
the possible inputs of the program, is specifically used to generate test cases.
Thus, even when an XML Schema for the program exists, the human tester has
to select from the XML Schema those relevant elements for the program: paths
and values to be tested. It does not mean that the original schema does not serve
for test case generation, but usually the number of instances can be greater than
necessary, affecting the performance of the tool. In particular, the human tester
has to select relevant values and to incorporate them to the XML Schema in
the enumeration section, and choice statements have to explicitly be selected by
the human tester. It does not mean that the human tester can test more than
one combination of them. Additionally, our work can be seen as an extension of
the TAXI approach enabling property-based testing of XQuery programs.

In [10] they propose the automatic generation of XML documents from
a DTD and an example. The framework called GxBE (Generate-XML-By-
Example) uses a declarative syntax based on XPath to describe properties of
the output documents. They claim that datasets are useful for testing when
they conform a certain schema (an DTD schema extended with cardinality con-
straints), when they have some specific characteristics (i.e., datasets returning
empty answers are not very useful) and the data values match an expected data
distribution. They are able to express global properties on the document, in
particular, to express the so-called count constraints making use of XPath and
the count function. With regard to GxBE, our approach randomly generates test
cases from the XML Schema in which values have been incorporated, while prop-
erties are not considered to test case generation. Rather than properties are used
for testing after test case generation and query execution. In GxBE they propose
to use properties in test case generation as pre-conditions, in order to generate
a more suitable test suite. We believe that this is an interesting idea and we will
incorporate it to our tool in the future. In GxBE they are concerned about test
case generation efficiency. In our approach, test case generation efficiency cannot
be ensured but it is under control. Firstly, the human tester can customize the
number of test cases by modifying the input XML Schema, as well as by select-
ing the size of the trees. Additionally, test case generation is dynamic. It means
that when testing a given program, test cases are incrementally generated and
the tool stops when a failure (i.e., the property is not satisfied) has been found.
It drastically reduces the time required for testing.

In [15] they describe how to test output documents of XML queries. They
permit the specification of properties on XML documents via an XML template
in which expected nodes, unexpected nodes, expected ordering and expected
cardinality can be specified. In this work rather than test case generation, they
propose the specifications of some properties on the output (i.e., post-conditions)
to be checked against the output document. We adopt a similar approach but
enabling the specification of a richer repertoire of properties. In fact, we do not
restrict the type of property, making possible to use any XQuery expression to
test the program. Nevertheless, we implicitly assume that the property to be
checked is considerably simple. Testing should be focused on simple properties,

272 J.M. Almendros-Jiménez and A. Becerra-Terón

otherwise the testing process would be as complex as the programming process.
Moreover, complex properties affect the performance of the tool.

There are some works about white-box testing in this context. A partition-
based approach for XPath testing has been proposed in [11]. They propose the
construction of constraints from categorization and choice selection in order to
generate test cases for XPath expressions. In [8] they study test case generation
based on the category partition method and make use of SMT and Z3 solvers
for input data generation. Test cases are specified in XML. Our approach is still
a black-box technique, but we will consider as future work to include white-box
test case generation. In particular, we believe that the XML schema input of the
test case generation can be filtered/generated from the program.

1.1 Example

Now, we would like to show an example to illustrate the approach. Let us suppose
the following XQuery program:
for $book in $file/book return

if ($book/title="UML" and $book/price <100) then
<book_UML >

{$book/@year}{$book/author}{$book/price}
</book_UML >

else if ($book/title="XML" and $book/@year >2000 and $book/price <100) then
<book_XML >

{$book/@year}{$book/author}{$book/price}
</book_XML >

else ()

And let us suppose that we would like to know whether the output of the
program satisfies the following properties: “Prices of books are smaller than
100” and “Book are after 2000”. Our tool works as follows. Firstly, we have
to define an XML Schema for generating test cases. For instance, the schema
shown in Fig. 1. There, we intentionally select values (defined in the enumeration
statement) for titles, authors, prices and years, oriented to the selected properties
(i.e., years after and before 2000, and prices greater and smaller than 100). Titles
are selected according to the intended behavior of the program (i.e., selection
of UML and XML books), and one author is provided for completing book
information. Next, we convert the query into a function as follows:
declare function tc:books_query($file)
{for $book in $file/book return

if ($book/title="UML" and $book/price <100) then
<book_UML >
{$book/@year}{$book/author}{$book/price}
</book_UML >

else if ($book/title="XML" and $book/@year >2000 and $book/price <100) then
<book_XML >
{$book/@year}{$book/author}{$book/price}
</book_XML >

else ()
};

After, we can define the following Boolean XQuery functions that act on the
output document.

XQuery Testing from XML Schema Based Random Test Cases 273

<xs:schema xmlns:xs="http ://www.w3.org /2001/ XMLSchema">
<xs:simpleType name=" authorType">

<xs:restriction base="xs:string">
<xs:enumeration value=" Buneman"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" yearType">

<xs:restriction base="xs:integer">
<xs:enumeration value ="1995"/ >
<xs:enumeration value ="2005"/ >

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" priceType">

<xs:restriction base="xs:integer">
<xs:enumeration value ="80"/ >
<xs:enumeration value ="150"/ >

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" titleType">

<xs:restriction base="xs:string">
<xs:enumeration value="UML"/>
<xs:enumeration value="XML"/>

</xs:restriction >
</xs:simpleType >
<xs:element name="bib">
<xs:complexType >
<xs:sequence >
<xs:element name="book" minOccurs ="1" maxOccurs =" unbounded">

<xs:complexType >
<xs:sequence >

<xs:element name=" author" type=" authorType" minOccurs ="1"
maxOccurs =" unbounded"/>

<xs:element name="title" type=" titleType"/>
<xs:element name="price" type=" priceType"/>

</xs:sequence >
<xs:attribute name="year" type=" yearType" use=" required"/>

</xs:complexType >
</xs:element >
</xs:sequence >
</xs:complexType >
</xs:element >
</xs:schema >

Fig. 1. XML Schema example

declare function tc:books_price_100($book){
$book/price <100

};

declare function tc:books_year_2000($book){
$book/@year >2000

};

Now, we can call the tool with the first property as follows, reporting the answer
below:
tc:tester(" schema.xsd","tc:books_query", "tc:books_price_100 ",1)
Ok: passed 80 tests.
Trivial: 35 tests.

and also, with the second property, reporting the answer below:
tc:tester(" schema.xsd","tc:books_query", "tc:books_year_2000 ",1)
Falsifiable after 8 tests.
Counterexamples:
<bib >

<book year ="1995" >
<author >Buneman </author >
<title >UML </title >

274 J.M. Almendros-Jiménez and A. Becerra-Terón

<price >80</price >
</book >

</bib >
....

The first reported answer means that all the books of the output have price
smaller than 100 for the given 80 test cases. From them, 35 produce an empty
answer, and thus the property cannot be checked. Empty answers come from
test cases in which prices are greater than 100. The second reported answer
means that the tool finds at least one counterexample (shown bellow) from eight
test cases. Thus, the second property is not satisfied. We can inspect now the
program revealing that UML books are not filtered by year. In the first case, we
are not sure whether the property is satisfied, but 80 test cases passed it. We
have incorporated a parameter to the tool (the “1” occurring in the example)
to limit the number and size of generated test cases. Increasing this number, we
can have a stronger confidence about this property. More details will be given in
Sect. 2. Let us remark that for the examples shown the tool spends 101 and 20 ms,
respectively. We have evaluated our tool with several examples (see Sect. 4).

The rest of the paper is structured as follows. Section 2 will describe the
algorithm for test case generation. Section 3 will present how XQuery programs
are tested by our tool. Section 4 will show examples of evaluation. Finally Sect. 5
will conclude and present future work.

2 Test Case Generation

In this section we will describe how test cases are randomly generated from an
XML Schema. As was commented in the introduction, the XML schema used
for test case generation is not necessarily the XML Schema given to the input
program. Rather than, the human tester has to define, in most cases, a new
XML Schema based on the original one, in which he or she selects the elements
that are sufficient to test the program. The original schema leads to a too wide
range of test cases that could not be required to test the program, affecting the
performance of testing. Although our approach is a black box testing mechanism,
the human tester has to select from the space of input data, those relevant to
the program. Basically, the selected number of tags/paths of the document as
well as values should be relevant.

The XML Schema offers a wide range of mechanisms to express input data
structure. However, from testing process point of view, only a small subset of
mechanisms is actually required. For instance, choice and all statements for
declaring content of complex types are used in the XML Schema to produce
variants of XML trees in which some tags can occur or not in the trees. We only
consider the case of sequence, in which the human tester can play with minOccurs
and maxOccurs elements, to force the occurrences of tags. Allowing zero in
minOccurs, choice is a particular case of sequence in the test case generation.
The current implementation does not consider the case of all (which permits
any ordering of tags) given that it produces a huge number of cases. There are
other mechanisms explicitly avoided like any, anyAttribute and list. Additionally,

XQuery Testing from XML Schema Based Random Test Cases 275

attributeGroup, Group, redefine, extension, union, import and include enabling
reuse of definitions are not considered. Keys are also not considered. ref can
be used to define recursive definitions in which a recursive complexType has to
be defined. Finally, enumeration is used for defining the values of a certain tag.
When a certain tag does not have the corresponding enumeration statement,
the tool assigns a default value. In summary, an XML Schema for test case
generation includes: attribute (use), element (minOccurs/maxOccurs), sequence
(minOccurs/maxOccurs), complexType, ref and enumeration. Neither use nor
minOccurs/maxOccurs are required assuming default values: optional and 1,
respectively.

Test case generation can be controlled by the human tester. XML trees are
generated in a certain order of increasing size. Basically, the random test case
generator starts from the smallest XML tree conforming the given schema, and
in each step it increases the size of previously generated trees by adding a new
branch up to maxOccurs value. Recursive definitions are also unfolded in each
step. In case maxOccurs is unbounded or with recursive definitions, the random
test case generator is able to produce an infinite number of trees, but it never
happens because the number of steps is a parameter of the test case generator.
When the testing process is carried out, the test cases are dynamically generated
up to the required number of steps, but whenever the program fails to satisfy the
given Boolean property the tester stops and no more cases are generated. Thus,
there will happen that only the required cases to fail the program are computed.
In the case of success, they will be fully computed. From a practical point of view,
the human tester should request a small number of steps in the beginning and
increase in case of success. In Sect. 4 we will show experiments made for different
XML Schemas. Figure 2 shows an example of test case generation for an XML
Schema. Starting from the XML Schema shown in the left corner (schematically
represented), in each step, the test case generator produces new schemas, and
schemas are populated with values. In Fig. 2, step 1 generates 1, step 2 gener-
ates 1.1, step 3 generates 1.1.1, 1.1.2, and 1.1.3, and step 4 generates 1.1.1.2,

Fig. 2. Test Case Generation Example

276 J.M. Almendros-Jiménez and A. Becerra-Terón

1.1.1.3, 1.1.1.3, 1.1.2.1,1.1.2.2,1.1.2.3, and so on. In each step the schemas previ-
ously generated are used to compute new ones. Basically, the idea is to increase
minOccurs values, to add optional attributes and to unfold recursive definitions
in each step. The order in which the trees increase is top-down.

3 Property-Based Testing

Now, we would like to explain how testing process is carried out. Firstly, we
will define the meaning of a certain program passing a test, and secondly we
will describe the implementation of the tool. We only consider the case of unary
Boolean properties, and programs with single input. The following definitions
can be generalized to the case of n-ary properties and multiple inputs.

Assuming a finite set of test cases t1, . . . , tn of an XML Schema Σ, a program
P and a Boolean property p, we say that P passes the test p in t1, . . . , tn whenever
for each ti, i = 1, . . . , n such that P(ti) �= ∅ then p(P(ti)). We say that P fails the
test p whenever there exists ti, i = 1, . . . , n such that P(ti) �= ∅ and ¬p(P(ti)).
Finally, we say that p cannot be checked for P in t1, . . . , tn, whenever for all ti,
i = 1, . . . , n, P(ti) = ∅.

Given a program P and an XML Schema Σ, we say that P conforms to Σ
whenever there exists t which conforms to Σ such that P(t) �= ∅. In other words,
P conforms to Σ whenever at least an answer of P is not empty, and thus it
means that Σ is correct for P.

Obviously, if p cannot be checked for P then the test cases t1, . . . , tn are not
sufficient and thus we cannot say anything about the program P. It can happen
in the following cases: (a) P does not conform to Σ and (b) t1, . . . , tn are not
enough. To solve (a) the human tester has to modify Σ. In case (b), a more
complete set of test cases has to be used. The implemented tester is able to
detect (for a finite set of test cases) when a program P passes or fails a test ti
as well as when p cannot be checked for P.

Now, we present the main elements of the implementation. The testing tool
has been implemented as an XQuery function that takes as arguments the
schema, the program, the property and the number of steps of test case gen-
eration. The program and property have to be represented as functions. It does
not mean that only functions can be tested. In case of large XQuery programs
the main query has to be represented as a function taking as argument an input
XML document. In the current implementation only unary functions are allowed.
We will consider as future work the extension of the tester to n-ary functions.
The code of the tester is as follows:
declare function tc:tester($schema as node()*,$query as xs:string , $property

as xs:string , $i as xs:integer){
tc:tester_loop($schema ,$query ,$property ,0,$i ,0,0)};

Basically, the tester is a loop of i steps (according to the provided argument),
in which in each step a set of schemas is generated. The schema instances are
populated with values, and they are taken as input of the given program, and the
given property is checked for each output. Whenever all the instances pass the

XQuery Testing from XML Schema Based Random Test Cases 277

test the loop continues. Otherwise, no more schemas and instances are generated
and the tester reports “Falsifiable”, showing the number of tested cases and the
counterexamples. In case of loop continues, it ends when the number of steps is
reached. In such case, the tester reports “Ok” whenever all the instances pass
the test, showing the number of test cases and empty answers. When the number
of empty answers is equal to the number of test cases, the tool reports “Unable
to check the property”. The tester loop is as follows:
declare function tc:tester_loop($schema as node()*,$query as xs:string ,

$property as xs:string ,$k as xs:integer , $i as xs:integer ,$tests as xs:
integer ,$empties as xs:integer){

if ($k>$i) then if ($tests=$empties) then tc:show_unable ()
else tc:show_passed($tests ,$empties)

else tc:tester_schema($schema ,$schema ,$query ,$property ,$k,$i,$tests ,$empties)
};

and each step is implemented as follows:
declare function tc:tester_schema($schemas as node()*,$all as node()*,

$query as xs:string ,$property as xs:string ,$k as xs:integer ,
$i as xs:integer ,$tests as xs:integer ,$empties as xs:integer){

if (empty($schemas))
then let $new := tc:new_schemas($all)

return tc:tester_loop($new ,$query ,$property ,$k + 1,$i,
$tests ,$empties)

else
let $sc := head($schemas)
let $structure := tc:skeleton($sc/xs:schema/xs:element)
let $examples := tc:populate($structure ,tc:getTypes($structure),

tc:getVal($sc/xs:schema ,
tc:getTypesName($structure)))

let $total := count($examples) return
if (not($total =0))

then
let $fquery := function -lookup(xs:QName($query) ,1)
let $fproperty :=function -lookup(xs:QName($property) ,1)
let $no := (for $example in $examples

let $result := $fquery($example)
where not($fproperty($result)) return
if (empty($result)) then <empty/> else $example)
let $noempty := $no[not(name (.)="empty")]
let $falsifiable := count($noempty)
let $newempties := count($no[name (.)="empty "])+$empties
let $newtests := $tests + count($examples)
return
if ($falsifiable =0)
then tc:tester_schema(tail($schemas),$all ,$query ,

$property ,$k,$i,$newtests ,$newempties)
else tc:show_falsifiable($newtests ,$noempty)
else if ($tests=$empties) then tc:show_unable ()

else tc:show_passed($tests ,$empties)
};

where tc:new schemas is responsible to the generation of schemas, sc:skeleton
produces the skeleton of the instance and tc:populate fills the skeleton with
elements.

3.1 Examples

Now, we would like to show a batch of examples, in order to prove the benefits
of the tester.

278 J.M. Almendros-Jiménez and A. Becerra-Terón

Example 1. Assuming the schema of Fig. 1, we can test the following program:
declare function tc:yearofUMLbooks($file){
for $x in $file/book
where $x/title="UML" and $x/@year >2000
return $x/@year};

with regard to the following property:
declare function tc:after2000($year){

$year >2000};

obtaining the following answer:
Ok: passed 80 tests.
Trivial: 48 tests.

48 trivial cases (i.e., empty answers) are checked, corresponding to the case of
non “UML” and before 2000 books, which are generated according to the given
schema. In the case of the property:
declare function tc:before2000($year){

$year <2000};

the following answer is reported:
Falsifiable after 8 tests.
Counterexamples:
<bib >

<book year ="2005" >
<author >Buneman </author >
<title >UML </title >
<price >80</price >

</book >
</bib >
<bib >
...

The counterexamples shown are non-empty solutions which do not satisfy the
given property. The human tester has to include enough values for obtaining a
suitable answer. In this example, the schema should include at least a value after
2000 (i.e., 2005), and “UML” as value for title. In case the human tester omits
the following line in the XML Schema:
<xs:attribute name="year" type=" yearType" use=" required"/>

Now, the tester reports “Unable to test the property”. The same happens when
the title is omitted. In both cases, it is due to empty answers. In the opposite
case, author and price are not required to test this program. The human tester
can remove from the schema unnecessary tags and attributes for improving per-
formance.

Example 2. In the case of the following program:
declare function tc:books_query($file){
for $book in $file/book return
if ($book/title="UML" and $book/price <100) then

<book_UML >
{$book/@year}{$book/author}{$book/price}
</book_UML >

else if ($book/title="XML" and $book/@year >2000 and $book/price <100) then
<book_XML >
{$book/@year}{$book/author}{$book/price}
</book_XML > else ()

};

XQuery Testing from XML Schema Based Random Test Cases 279

we can ask about:
declare function tc:books_price_100($book){

$book/price <100};

obtaining the following answer with respect to the schema of Fig. 1:
Ok: passed 80 tests.
Trivial: 35 tests.

35 trivial cases corresponding to tests in which prices are greater than 100, as
well as XML books published before 2000. But we can express more complex
properties like:
declare function tc:allbooksofBuneman($book){

every $b in $book satisfies $b/author=" Buneman "};

In this case the tester also answers “Ok” because “Buneman” is the only value for
author. Also we can check a more complex property like the following, obtaining
the same answer:
declare function tc:price_and_year($book){

every $b in $book satisfies
if (name($b)=" book_UML ") then $b/price <100
else $b/@year >2000 and $b/price <100};

Example 3. The adequacy of the selected XML Schema does not only depend on
the selected values for each tag and attribute, but also on the required number
of branches. Here the minOccurs and maxOccurs values play a key role. For
instance, let us suppose we test the following program:
declare function tc:third_book($bib){

let $third := $bib/book [3]
where $third/title="UML"
return <third >{ $third/title}{ $third/author [3]} </third >};

with regard to the following property:
declare function tc:UML($book){

$book/title="UML"};

In this case, if we call the tester with:
tc:tester(.,"tc:second_book", "tc:UML",1)

then we obtain “Unable to test the property”. It happens because the value
one has been selected as number of steps for test case generation. It means
that according to the XML Schema only bibliographies with at most one book
have been created. The same happens with two steps. Only for three steps the
following answer is reported:
Ok: passed 656 tests.
Trivial: 400 tests.

In this example the human tester should modify the XML Schema and declare
minOccurs as three for the sequence of books. It forces the generation of useful
test cases in the first step. It also happens for optional attributes. The same
happens for branches. For instance, let us suppose that in the schema of Figure 1,
minOccurs is set to zero in all the cases. The same previous query and property
cannot be checked after eight steps. In the case of long paths and recursive
definitions, the number of steps has to be larger, otherwise useful test cases are
not generated in early stages.

280 J.M. Almendros-Jiménez and A. Becerra-Terón

Table 1. Benchmarks of testing

4 Evaluation

We have evaluated our tool with the XQuery use cases available in the W3C
page5. We have checked properties on the queries of Sect. 1.1.9.1 of the cited
repository (only those queries with a single input parameter). We have ana-
lyzed the time required for each query and the number of tests. The properties,
response times (in milliseconds) as well as number of tests are shown in Table 1.
Benchmarks have been made on a 2.66 GHz Inter Core 2 Duo MAC OS machine,
with 4 GB of memory. We have used the BaseX XQuery interpreter [13]. Proper-
ties have been selected to be representative to the computation of each query. We
have tested each property and its negation in order to measure time required to
pass and fail the property. From the table, we can conclude that for a reasonable
number of tests (from three hundred to thousand test cases in some examples),
the tester is able to answer in a short time. The selected schema is crucial to
have a short time. When the number of values for each type, as well the number
of selected paths is high the performance is worst. The tester implementation
as well as the examples shown in the paper can be downloaded from http://
indalog.ual.es/TEXTUAL.

5 http://www.w3.org/TR/xquery-use-cases/.

http://indalog.ual.es/TEXTUAL
http://indalog.ual.es/TEXTUAL
http://www.w3.org/TR/xquery-use-cases/

XQuery Testing from XML Schema Based Random Test Cases 281

5 Conclusions and Future Work

In this paper we have presented a tool for testing XQuery programs. We have
shown how the proposed tool is able to automatically generate a test suite from
the XML Schema of the input documents of the program in order to check a given
property on the output of the program. It makes possible to have an stronger
confidence about the correct behavior of the program. As future work, we would
like to extend our work as follows. Firstly, there is a natural extension to cover
programs with more than one input document. The current implementation of
the tool works with any kind of XQuery expression but having a single input
document. Secondly, we would like to extend the tool by adding more informa-
tion about test cases. In the current implementation, only the number of empty
solutions are shown, but other than empty solutions are relevant. For instance,
non-empty solutions returning empty values for parts of the query (i.e., paths,
subexpressions, etc.) can be useful for the human tester. Thirdly, we will consider
how to filter test case generation by considering properties on the input docu-
ment. The XML Schema imposes restrictions in terms of cardinality, but input
programs can require to satisfy more complex properties. Input-output prop-
erties (i.e., properties relating input and output) will be also subject of study
in the future. Fourthly, we would like to extend our work to the case of white
box testing. In particular, XML Schemas can be automatically filtered/gener-
ated from the program in order to generate useful test cases. Finally, a richer
repertoire of XML Schema statements will be included in the implementation.

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Har-
man, M., Harrold, M.J., McMinn, P., et al.: An orchestrated survey of methodolo-
gies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001
(2013)

2. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: a template-based
data generator for XML. In: Proceedings of the 2002 ACM SIGMOD, pp. 616–616.
ACM (2002)

3. Bartolini, C., Bertolino, A., Marchetti, E., Polini, A.: WS-TAXI: a WSDL-based
testing tool for web services. In: International Conference on Software Testing
Verification and Validation, 2009, pp. 326–335. IEEE (2009)

4. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation for
XML schema-based partition testing. In: Proceedings of the Second International
Workshop on Automation of Software Test (AST), p. 4. IEEE Computer Society
(2007)

5. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: TAXI-a tool for XML-based test-
ing. In: Companion to the Proceedings of the 29th International Conference on
Software Engineering, pp. 53–54. IEEE Computer Society (2007)

6. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: XModel-based testing of XSLT
applications. WEBIST 2, 282–288 (2007)

7. Bertolino, A., Lonetti, F., Marchetti, E.: Systematic XACML request generation
for testing purposes. In: 36th EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 3–11. IEEE (2010)

282 J.M. Almendros-Jiménez and A. Becerra-Terón

8. Chimisliu, V., Wotawa, F.: Category partition method and satisfiability modulo
theories for test case generation. In: 2012 7th International Workshop on Automa-
tion of Software Test (AST), pp. 64–70. IEEE (2012)

9. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Not. 46(4), 53–64 (2011)

10. Cohen, S.: Generating XML structure using examples and constraints. Proc. VLDB
Endow. 1(1), 490–501 (2008)

11. De La Riva, C., Garcia-Fanjul, J., Tuya, J.: A partition-based approach for XPath
testing. In: International Conference on Software Engineering Advances, p. 17.
IEEE (2006)

12. Fisher, M., Elbaum, S., Rothermel, G.: An automated analysis methodology to
detect inconsistencies in web services with WSDL interfaces. Softw. Test. Verifica-
tion Reliab. 23(1), 27–51 (2013)

13. Grün, C.: BaseX. The XML Database (2015). http://basex.org
14. Harazaki, M., Tekli, J., Yokoyama, S., Fukuta, N., Chbeir, R., Ishikawa, H.: XBe-

Gene: scalable XML documents generator by example based on real data. In: Gaol,
F.L. (ed.) Recent Progress in DEIT, Vol. 1. LNEE, vol. 156, pp. 449–460. Springer,
Heidelberg (2013)

15. Kim-Park, D.S., de la Riva, C., Tuya, J.: An automated test oracle for XML
processing programs. In: Proceedings of the First International Workshop on Soft-
ware Test Output Validation, pp. 5–12. ACM (2010)

16. Jeong, H.J., Lee, S.H.: A versatile XML data generator. Int. J. Softw. Effectiveness
Effi. 1, 21–24 (2006)

17. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying and
generating functional tests. Commun. ACM 31(6), 676–686 (1988)

18. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-
cations with property-based testing. In: Proceedings of the 2011 ACM SIGPLAN
Erlang Workshop, pp. 39–50. ACM Press, New York, September 2011

19. Runapongsa, K., Patel, J.M., Jagadish, H.V., Chen, Y., Al-Khalifa, S.: The Michi-
gan benchmark: towards XML query performance diagnostics. Inf. Syst. 31(2),
73–97 (2006)

20. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:
a benchmark for XML data management. In: Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB Endowment, pp. 974–985 (2002)

21. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)

22. Yao, B.B., Ozsu, M.T., Khandelwal, N.: XBench benchmark and performance test-
ing of XML DBMSs. In: Proceedings of the 20th International Conference on Data
Engineering, 2004, pp. 621–632. IEEE (2004)

http://basex.org

	XQuery Testing from XML Schema Based Random Test Cases
	1 Introduction
	1.1 Example

	2 Test Case Generation
	3 Property-Based Testing
	3.1 Examples

	4 Evaluation
	5 Conclusions and Future Work
	References

