
Automatic Validation of XQuery Programs∗

Jesús M. Almendros-Jiménez
Dept. of Informatics
University of Almería
jalmen@ual.es

Antonio Becerra-Terón
Dept. of Informatics
University of Almería
abecerra@ual.es

ABSTRACT
In this paper we present a tool for the automatic valida-
tion of XQuery programs. Firstly, the tool is able to detect
wrong paths in XQuery expressions with respect to an XML
Schema. Secondly, it makes possible the specification of in-
put and output properties, as well as input-output properties
(i.e., properties relating input and output data) of programs.
Thirdly, the tool is able to filter randomly generated test
cases with input properties, as well as to test output and
input-output properties on randomly generated test cases
and the corresponding output. It reports counterexamples
when output or input-output properties are not satisfied.
The tool has been implemented as an XQuery library which
can be used from any XQuery interpreter.

1. INTRODUCTION
From the early years of computing, formal specification

of properties has been used to describe the behavior of pro-
grams. Properties can describe the input of the program,
establishing relationships between input data. Input prop-
erties are required for each input, in order to ensure a cor-
rect output. Properties can also describe the output of the
program, but in this case, they establish the relationships
between output data, which are ensured by the program.
In this context, testing of programs involves to test input
properties for input data as well as to test output properties
for each output data. Traditionally, this task is manually
performed by the programmer, but in modern programming
environments, automatic testing is carried out [2].

Recently [1], we have presented a tool for XQuery enabling
the automatic testing of XQuery programs. The tool ran-
domly generates a test suite to test an XQuery program.
The test suite is generated from an XML Schema provided

∗This work was supported by the EU (FEDER) and the
Spanish MINECO Ministry (Ministerio de Economı́a y
Competitividad) under grant TIN2013-44742-C4-4-R, as well
as by the Andalusian Regional Government under Project
P10-TIC-6114.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’15, December 11-13, 2015, Brussels, Belgium
c© 2015 ACM. ISBN 978-1-4503-3491-4/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2837185.2837263

by the programmer, in which he/she specifies the elements
required in the XML test cases. The tool is implemented
as an oracle able to report whether the XQuery expres-
sion passes the test. The test is an output property, and
thus when it is passed all the outputs of the test cases sat-
isfy the output property. Also the tool reports the number
of test cases used for testing. In case of success, the tool
reports “Ok”. Otherwise the tool reports counterexamples
(i.e., test cases of the XQuery program for which the out-
put does not satisfy the given output property). The tool is
customizable in the following sense. The human tester can
define the structure and content of the test cases from the
XML schema. Additionally, the human tester can control
the number of test cases. He or she can tune the number
and size of XML trees generated from the XML schema.
Thus, although the tool generates random test cases, the
tester can control the size of the test suite.

In spite of the tool is able to detect many programming
errors in XQuery, we have found that some cases require a
more elaborated testing process. More concretely, we have
found the following drawbacks:

• Most of programming errors in XQuery come from the
use of wrong paths in input XML documents. The
XQuery programmer tends to make mistakes when
he/she specifies the paths on input XML documents.
It has as consequence in most of cases empty/wrong
answers. However, the structure of XML documents
is usually known. Usually, the programmer has an
schema (DTD or XML Schema) describing the struc-
ture of input XML documents. Thus, a validation of
paths in XQuery programs against the schema is re-
quired. Moreover, wrong paths make impossible in
some cases the testing with our tool, because test cases
are generated from the XML Schema. Thus, an XML
Schema based validation of paths is mandatory as first
step for testing.

• While XML Schema describes the structure of input
XML documents, some programs require a more so-
phisticated characterization of input data. XML Schema
enables the specification of the hierarchical structure
of XML documents (i.e., the tag structure) as well
as cardinality and type of the tags. But there ex-
ist some constraints which cannot be specified by the
XML Schema. And these constraints can take part
of properties required to input data. In our tool test
cases are randomly generated but the test case gener-
ation algorithm only follows the structure of the XML

Schema. A specification of richer constraints on input
data, as well as validation of these input properties/-
constraints on input data are required to cover a larger
number of programs.

• While validation of input and output properties can
be sufficient for some programs, a more sophisticated
validation can be carried out specifying relationships
between input and output data. In fact, in some cases
input (about input data) and output (about output
data) properties are not sufficient to describe the be-
havior of programs. Thus, specification of input-output
properties is required.

Here we propose an extension of our tool. Firstly, the ex-
tension is able to detect wrong paths in XQuery expressions
with respect to an XML Schema. With this aim, the tool
analyzes variable dependences and collects the paths on an
XQuery expression. Later, it analyzes the conformance of
the collected paths to the XML Schema. It reports whether
a wrong path has been found. Secondly, the extension of
the tool makes possible the specification of input proper-
ties, as well as input-output properties. Thirdly, the tool
is able to filter randomly generated test cases with input
properties, as well as to test input-output properties on ran-
domly generated test cases and the corresponding output.
The tool reports counterexamples of input documents when
input-output properties are not satisfied.

The properties to be tested are defined by Boolean XQuery
functions. Usually, the property expresses a constraint/assert
in terms of XPath expressions and logical connectors: for
all, exists, and, or, etc., possibly making use of XQuery
functions. It makes possible to express a rich repertory of
properties: the occurrence of a certain value, the range of a
certain attribute, the number of nodes, etc.

Our approach is inspired by similar tools in functional
languages. This is the case of the Quickcheck tool [4] for
Haskell, and the PropEr tool [11] for Erlang. Properties in
these approaches are specified by functions, and they are
automatically tested from random test cases. Since XQuery
is also a functional language, it seems natural to provide a
similar tool for XQuery programs. Nevertheless, the context
is different. XQuery is a functional language handling XML
documents which are, in essence, ordered labeled trees, and
XQuery has as main element XPath expressions. Thus, here
random test case generation is focused on trees and thus
specific algorithms can be defined to automatically generate
trees of a certain size. Due to the higher order capabilities of
XQuery properties, as well as the XQuery program, can be
passed as arguments to the tester enabling the implemen-
tation of the tool in a similar way to Haskell and Erlang,
that is, the tool is an XQuery program implemented as an
XQuery library and thus can be used from any interpreter.

Schema based validation of XPath has been studied in
some works (see [7, 3, 6, 9], among others). However, as
far as we know, schema based validation of XQuery has not
been previously studied, and none of the existing XQuery
interpreters are equipped with XPath validation from XML
Schemas. We have studied how to analyze variable depen-
dences on XQuery programs in order to collect paths. Once
paths have been collected an algorithm for path validation
is defined. Both procedures have been implemented as an
XQuery library.

In [5] they propose the automatic generation of XML doc-

path := step | step[cond] | step[/path]
cond := path | cond and cond | cond or cond
step := axis | axis/step | axis//step
axis := n | * | @n | @* | . | .. | text()

Figure 1: XPath Syntax

uments from a DTD and an example. The framework called
GxBE (Generate-XML-By-Example) uses a declarative syn-
tax based on XPath to describe properties of the input doc-
uments. They are able to express global properties on the
document, in particular, to express the so-called count con-
straints making use of XPath and the count function. With
regard to GxBE, our approach randomly generates test cases
from the XML Schema and after they are filtered by input
properties, enabling as particular case the same kind of con-
straints as GxBE. We will show an example using count
constraints. Additionally, we are also able to handle output
and input-output properties. In GxBE they are concerned
about test case generation efficiency. In our approach, test
case generation efficiency cannot be ensured but it is under
control. Firstly, the human tester can customize the num-
ber of test cases by modifying the input XML Schema, as
well as by selecting the size of the trees. Additionally, test
case generation is dynamic. It means that when testing a
given program, test cases are incrementally generated and
the tool stops when a failure (i.e., the property is not satis-
fied) has been found. It drastically reduces the time required
for testing.

2. VALIDATION OF PATHS IN XQUERY
Firstly, we would like to explain how path validation of

XQuery is carried out. Given that the tester uses the XML
Schema for generating test cases, the same XML Schema is
used for path validation. Path validation includes path rec-
ollection of the XQuery expression and XML Schema based
validation. Path recollection involves variable dependence
analysis. Due to the lack of space, we omit here the de-
tails about the path recollection of the XQuery expression.
However, we show how a path expression is validated with
respect to an XML schema.

The collected path expressions are defined according to
grammar of Figure 1. Even though the XQuery expres-
sion can include paths with references to values, for in-
stance, “book[@year>2000 and price<100]/title”, the path
recollection remove values, thus becoming “book[@year and
price]/title”, since we are interested in the validation of the
path structure with respect to the XML Schema. While
XML Schemas offer a wide range of mechanisms to express
input data structure, testing and validation processes only
use a small subset of mechanisms. In path validation we
use the basic elements of XML schemas, that is, complex
types, elements and attributes. Cardinality constraints are
not used in path validation but used for test case generation
(see [1] for more details about test case generation). We
only consider the case of sequence, and ref can be used to
define recursive definitions in which a recursive complexType
has to be defined. minOccurs, maxOccurs and use elements
as well as enumeration are used for test case generation
but not for path validation. In summary, an XML Schema
for test case generation and validation includes: attribute
(use), element (minOccurs/maxOccurs), sequence (minOc-
curs/maxOccurs), simpleType, complexType, ref and enu-
meration. Thus, XML Schemas are defined according to the

xschema := ss cs element
complextype := ct n els atts
simpletype := st n ens
element := elem n cardinality | ref n cardinality

| elem n complextype cardinality
attribute := att n use u
enumeration := val n
cs := () | complextype | complextype cs
ss := () | simpletype | simpletype ss
els := () | element | element els
atts := () | attribute | attribute atts
ens := () | enumeration | enumeration ens
cardinality := minOccurs b maxOccurs b

Figure 2: XML Schema Syntax
Boolean validator(c̄,ac,p,xs)
{
if empty(p) then true
else if head(p)=/text() then true

else if empty(c̄) and head(p)=/n
then false

else if empty(c̄) and head(p)=/*
then false

else if head(p)=/* then
validator(∪1≤i≤n cts(ci),c̄+ac,next(p),xs)

else if head(p)=/text() then true
else if head(p)=n then

if name(ci)=n then
validator(cts(ci),c̄+ac,next(p),xs)
and validator pred(cts(ci),c̄+ac,pred(p),xs)

else if ref(ci)=n then
validator(ct(xs,n),c̄+ac,next(p),xs)
and validator pred(ct(xs,n),c̄+ac,pred(p),xs)

else false
else if head(p)=// then

validator rec(c̄,ac,next(p),xs)
else if head(p)=. then

validator(c̄,ac,next(p),xs)
and validator pred(cts(c̄),c̄+ac, pred(p),xs)

else if head(p)=.. then
if empty(ac) then false

else validator(head(ac),tail(ac),next(p),xs)
and validator pred(head(ac),tail(ac),pred(p),xs)

else if head(p)=@u then
if u ∈ att(ci) or u=* then true else false

}

Figure 3: XPath validator algorithm

abstract grammar of Figure 2, where n is a string and b
is a natural number or “unbounded” and u is “optional” or
“required”.

The validation algorithm is as follows (see Figure 3). The
algorithm takes as input a sequence of complex types c̄ =
c1, . . . , cn, a path p, a sequence ac of ascendants of c̄ (i.e.,
a sequence of c̄’s), and an XML Schema xs. It returns true
when the XPath expression p is validated with regard to
xs, otherwise it returns false. The initial call to the algo-
rithm is as follows: validator(ct root el (),(),p,xs) whenever
xs = ss cs el, where root is a fictitious name for the parent
of the root element. Given a path p, we denote by head(p)
the left most element of p, and next(p) the path in which
head(p) has been removed. Pred(p) denotes q when p = r[q].
Given a complex type c = ct n ē ā, we denote by cts(c), the
elements ci, 1 ≤ i ≤ n, where ei = elem ni ci, and by att(c)
the elements ni, 1 ≤ i ≤ n, where atti = att ni. Given an
schema xs we denote by ct(xs, n) the complex type of name
n of xs. “+” denotes the concatenation of sequences, and
head and tail the head and the tail of a sequence, respec-
tively.

The algorithm distinguishes cases depending on the form
of p, and c̄. The algorithm keeps stored the ascendants ac
of c̄ (i.e., the ascendants in the XML Schema of c̄) in or-
der to be able to go backward when “..” is used. Also, the

schema xs is passed as argument in order to go to the root
when “/” is used in the beginning of path conditions. Path
conditions are validated by the auxiliary Boolean function
validator pred. Also validator rec is an auxiliary func-
tion to validate path expressions starting from “//”. Due to
the lack of space we omit here details about these functions.

The path validator has been implemented in XQuery and
it uses the XQueryX [10] representation of XQuery pro-
grams. Thus, before path validation, the query is trans-
formed into the corresponding XQueryX representation. Next,
an XQuery function is responsible of the traversal of the
XQuery code as well as the path validation.

3. TESTING PROCESS
Now, we would like to explain how testing process is car-

ried out. We will define the meaning of a certain program
passing a test of input/output properties. We restrict our
presentation to programs with unary inputs. The following
definitions can be generalized to the case of n-ary inputs.

Assuming a finite set of test cases t1, . . . , tn of an XML
Schema Σ, a program P and a Boolean unary input prop-
erty p, and a Boolean unary output property q we say that
P passes the test (p, q) in t1, . . . , tn whenever for each ti,
i = 1, . . . , n such that p(ti) and P(ti) 6= ∅ then q(P(ti)).
We say that P fails the test (p, q) whenever there exists ti,
i = 1, . . . , n such that p(ti), P(ti) 6= ∅ and ¬q(P(ti)). Fi-
nally, we say that (p, q) cannot be checked for P in t1, . . . , tn,
whenever for all ti, i = 1, . . . , n, ¬p(ti) or P(ti) = ∅.

Obviously, if (p, q) cannot be checked for P then the test
cases t1, . . . , tn are not sufficient and thus we cannot say any-
thing about the program P. In order to solve this situation
the human tester has to modify Σ, p or q. The implemented
tester is able to detect (for a finite set of test cases) when a
program P passes or fails a test (p, q) as well as when (p, q)
cannot be checked for P. We will show in Section 4 examples
of these cases.

Analogously, we can define the following concept. Given
a finite set of test cases t1, . . . , tn of an XML Schema Σ, a
program P and a binary Boolean property u we say that
P passes the test u in t1, . . . , tn whenever for each ti, i =
1, . . . , n such that P(ti) 6= ∅ then u(ti,P(ti)). We say that
P fails the test u whenever there exists ti, i = 1, . . . , n such
that P(ti) 6= ∅ and ¬u(ti,P(ti)). Finally, we say that u
cannot be checked for P in t1, . . . , tn, whenever for all ti,
i = 1, . . . , n, P(ti) = ∅.

The implemented tester is also able to detect when a pro-
gram P passes or fails a test u as well as when u cannot be
checked for P. We will show in Section 4 examples of these
cases.

4. EXAMPLES
Now, we show examples of validation of paths with respect

to XML Schemas and examples of validation of input/out-
put properties.

Example 1 Assuming the schema of Figure 4 we can vali-
date with the path validator the conformance of the follow-
ing program:

for $t in (
for $book in $bookstore/bib/book
where $book/@date > 2000
return $book/author
)

<xs:element name="bib">
<xs:complexType >
<xs:sequence >
<xs:element name="book"

minOccurs ="1" maxOccurs =" unbounded">
<xs:complexType >

<xs:sequence >
<xs:element name=" author" type=" authorType"

minOccurs ="2" maxOccurs =" unbounded"/>
<xs:element name="title" type=" titleType"/>
<xs:element name="rate" type=" rateType"

minOccurs ="2" maxOccurs =" unbounded"/>
</xs:sequence >
<xs:attribute name="year" type=" yearType"

use=" required"/>
</xs:complexType >

</xs:element >
</xs:sequence >
</xs:complexType >
</xs:element >

Figure 4: XML Schema example I: Tags

<xs:simpleType name=" yearType">
<xs:restriction base="xs:integer">

<xs:enumeration value ="1995"/ >
<xs:enumeration value ="2005"/ >

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" rateType">

<xs:restriction base="xs:integer">
<xs:enumeration value ="1"/>
<xs:enumeration value ="3"/>
<xs:enumeration value ="5"/>
<xs:enumeration value ="10"/ >

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" titleType">

<xs:restriction base="xs:string">
<xs:enumeration value="UML"/>
<xs:enumeration value="XML"/>

</xs:restriction >
</xs:simpleType >
<xs:simpleType name=" authorType">

<xs:restriction base="xs:string">
<xs:enumeration value=" Buneman"/>
<xs:enumeration value=" Abiteboul"/>

</xs:restriction >
</xs:simpleType >

Figure 5: XML Schema example I: Values

return <names > {$t/title/text()} </names >

Here the programmer makes two mistakes. The first is
that “date” is not an attribute of “books”. Rather than the
attribute is called “year”. After, the path “$t/title/text()”
is wrong because “$t” is bounded to “$book/author” and
“$book” is bounded to“$bookstore/bib/book”. Thus the full
path is “$bookstore/bib/book/author/title/text()”, which is
a wrong path. The path validator answers with the following
message:

Schema Validation Error::Wrong path:date
Schema Validation Error::Wrong path:title

Example 2. Now, we show an example of property testing.
Let us suppose the following query with respect to the XML
Schema of Figure 4, in which values have been added (see
Figure 5).

<bib >
{

for $b in $bib//books
where $b[author =" Buneman "]
return

<book >
{ $b/title }
{ for $a in $b/author[position () <=2]

return $a}

{if (count($b/author) > 2)
then <et-al/>
else ()}

</book >
}

</bib >

And let us suppose to test the following output property:

every $b in $bib//book
satisfies $b/author =" Buneman"

when the following input property is required:

every $b in $bib//book
satisfies count($b/author) <=2

The output property requires that one of the authors of
the output document is “Buneman”, when the number of
authors is smaller than two (according to the input prop-
erty). The tester reports “Ok”. It seems that the program is
correct and passes the test. However, the program is wrong
due to the path “$bib//books”. Here, the answer is not
empty because the program always returns at least the la-
bel “bib”. Also, the output property is trivially true: “bib” is
empty and thus all of the books have as author “Buneman”.
This is the reason why path validation is required. We can
also test the same output property, in the opposite case of
the previous input property (i.e., the number of authors is
greater than two), with the paths corrected:

every $b in $bib//book
satisfies count($b/author)>2

In this case, the tester reports:

Output Property Falsifiable after 512 tests.
Counterexamples:
<bib >

<book year ="1995" >
<author >Abiteboul </author >
<author >Abiteboul </author >
<author >Buneman </author >
<title >UML </title >
<rate >1</rate >
<rate >1</rate >

</book >
</bib >

Because in the case of “Buneman” occurs in the third po-
sition, his name is replaced by “et-al”, and thus the output
property is false. An input-output property which can be
tested is the following, specifying that in the output docu-
ment (represented by “$bibo”) each book having “et-al” has
more than two authors in the input document (represented
by “$bibi”):

every $b in $bibo//book
satisfies (if (count($b/et-al)=1) then
some $c in $bibi//book satisfies ($c/title=$b/title
and count($c/author) >2) else true())

The tester answers in this case “Ok”, while in the case of the
following input-output property, specifying that each input
book title is an output book title:

every $b in $bibi//book
satisfies some $c in $bibo//book satisfies

$b/title=$c/title

the tester finds counterexamples, because the query filters
Buneman’s books.

Input -Output Property Falsifiable after 256 tests.
Counterexamples:
<bib >

<book year ="1995" >
<author >Abiteboul </author >

<author >Abiteboul </author >
<title >UML </title >
<rate >1</rate >
<rate >1</rate >

</book >
</bib >
<bib >

Example 3: Now, we show that the testing of input and
input-output properties can fail when either the schema has
not been correctly selected or input and input-output have
been not correctly selected. In such cases the tester returns
“Unable to test the property”. In Example 2, XML Schema
has to be conveniently selected. When the input property
to be satisfied is, for instance:

every $b in $bib//book
satisfies count($b/author) <=2

and the minOccurs value of “author” is set to three then
the tester answers with “Unable to test the property”. Also
it happens when minOccurs of “author” is set to zero, we
require “count($b/author)>2” and the number of iteration
steps of the tester is set to zero, one or two (see [1] for more
details). The same happens to the output and input-output
properties. Let us suppose, for instance, we request as input
property:

every $b in $bib//book
satisfies $b/author =" Buneman"

and“Buneman”has not been included in the XML Schema,
or minOccurs of “author” is set to zero and the number of
iteration steps of the tester is set to zero (see [1] for more
details).

5. EVALUATION
We have evaluated our tool with the XQuery use cases

available in the W3C page1. We have checked properties on
the queries of Section 1.1.9.1 of the cited repository (only
those queries with a single input parameter). Properties
have been selected to be representative to the computation
of each query. We have tested input, output and input-
output properties. We have analyzed the time required for
each query and the number of tests. Benchmarks have been
made on a 2.66 GHz Inter Core 2 Duo MAC OS machine,
with 4GB of memory. We have used the BaseX XQuery
interpreter [8]. The tester is able to answer in a short time
ranging from 6 to 763 ms. The number of test cases range
from 2 to 1,884. Failed testing takes less time because the
tester stops when a counterexample is found. The tester
and path validator implementation as well as the examples
shown in the paper can be downloaded from http://indalog.
ual.es/TEXTUAL.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an extension of our tool for

testing XQuery programs. We have shown how the proposed
tool is able to automatically test input and input-output
properties on XQuery programs. Also we have shown how
path validation is useful for improving XQuery testing. The
proposed tool makes possible to have a stronger confidence
about the correct behavior of the program. As future work,
we would like to extend our work as follows. Firstly, there
is a natural extension to cover programs with more than

1http://www.w3.org/TR/xquery-use-cases/.

one input document. The current implementation of the
tool works with any kind of XQuery expression but having
a single input document. Secondly, we would like to extend
our implementation of path validation with non-abbreviated
XPath syntax and other XML Schema statements (types
and cardinality). Also the path validator can be improved
by showing the location of wrong paths and it could provide
recommendations. Finally, we would like to extend our work
to the case of white box testing: automatic generation of test
cases from the program.

7. REFERENCES
[1] J. M. Almendros-Jiménez and A. Becerra-Terón.

XQuery Testing from XML Schema Based Random
Test Cases. In Database and Expert Systems
Applications, volume LNCS 9262, pages 268–282.
Springer, 2015.

[2] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.
Cohen, W. Grieskamp, M. Harman, M. J. Harrold,
P. McMinn, et al. An orchestrated survey of
methodologies for automated software test case
generation. Journal of Systems and Software,
86(8):1978–2001, 2013.

[3] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. Journal of the
ACM (JACM), 55(2):8, 2008.

[4] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. ACM
SIGPLAN notices, 46(4):53–64, 2011.

[5] S. Cohen. Generating XML structure using examples
and constraints. Proceedings of the VLDB
Endowment, 1(1):490–501, 2008.

[6] P. Genevès and N. Layäıda. A system for the static
analysis of XPath. ACM Transactions on Information
Systems (TOIS), 24(4):475–502, 2006.

[7] J. Groppe and S. Groppe. Filtering unsatisfiable
XPath queries. Data & Knowledge Engineering,
64(1):134–169, 2008.

[8] C. Grün. BaseX. The XML Database, 2015.
http://basex.org.

[9] J. Hidders. Satisfiability of XPath expressions. In
Database Programming Languages, pages 21–36.
Springer, 2004.

[10] J. Melton and S. Muralidhar. XML Syntax for
XQuery 1.0 (XQueryX) (Second Edition), 2010.
http://www.w3.org/TR/xqueryx/.

[11] M. Papadakis and K. Sagonas. A PropEr Integration
of Types and Function Specifications with
Property-Based Testing. In Proceedings of the 2011
ACM SIGPLAN Erlang Workshop, pages 39–50, New
York, NY, Sept. 2011. ACM Press.

